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PROBLEMS OF HEAT STERILIZATION DYNAMICS

Sadao Komemushi

ABSTRACT. Death behavior of microorganisms during
heat sterilization is studied in connection with con-
formity or non-conformity to the logarithmic death law.
Various interpretations of the dynamics of the logarith-
mic death law are cited from the literature, and possible
explanations for non-logarithmic death curves are advanced.
The role of thermal activation phenomena in heat sterili-
zation is discussed.

Introduction /706

"Sterilization" is an indispensable process in the fermentation industry,

the food-processing industry, and the pharmaceutical industry. There are

unexpectedly few books dealing in general terms with the all-important methods

of sterilization and with related problems [1 - 41. In most of them, the

question is merely treated as one part of a number of unit operations (pro-

cesses). Various sterilization methods are in use. Here, let us consider,

from the standpoint of dynamics, the problems connected with the "heat sterili-

zation method."

In his definition of the "dynamics of heat sterilization," Terui (1968)

[5] states: "in the narrow sense, it is the dynamics of thermal death of}

groups of microorganisms. However, in view of the actual meaning of the pro-

cess of sterilization, if we interpret it in a broad sense, discussing the

relationship between the heating process and the death behavior of the micro-

organisms which are the object of heat sterilization in a system consisting of

these microorganisms and their medium, taking into account also questions of

Numbers in the margin indicate pagination in the original foreign text.
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the movement of heat within the medium, we will obtain what might be called

'heat sterilization engineering,' if we introduce into this target-elements

concerning such matters as the quality of the medium."

Research on the dynamics of heat sterilization begins with the study of

the dynamics in the narrow sense as defined above and extends as far as dynamics

in the broader sense. However, two intermediate systems are conceivable in

the process leading from one to the other:

i) Systems in which the heat movement time cannot be ignored;

ii) Systems in which quality degeneration of the suspension medium (and

of the effective components suspended or dissolved therein) cannot be ignored.

Concerning the first type of system, the writings of Hirai (1968) [61,

Nakano and Miyoshi (1963) [7]7 C.R. Stumbo (1965) [8], and J.W. Richards (1968)

[91 summarize studies in which heat movement was taken into consideration in

connection with the design of heat sterilization equipment, using sterilization

methods for canned foods as the materials for study. Similar studies concern-

ing the sterilizing conditions of fermentation culture media were also per-

formed by F.H. Deindoerfer et al. [10 - 131, who have reported concerning

methods of calculating the sterilizing conditions. Concerning systems of the

second type, a comparison of the activation energy (obtained from the inacti-

vation speed of microorganisms) with the activation energy of vitamins reveals

that short-time sterilization in the high temperature zone has good effects in

preventing quality degeneration of the effective components [141. For this

reason, in heat processing of milk, it is said that the HTST (high temperature

short time) method and the UHT (ultra high temperature) method are more

effective than pasteurization [151. As the heat processing of milk has under-

gone these changes, passing from pasteurization through the HTST method to

the UHT method, research has progressed quite close to the broader definitio6ni

of dynamics as given above, and the milk-processing field is apparently one of

the most advanced fields in the food-processing industry with respect to heat

processing.
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In this general survey, in order to simplify the question, let us

interpret the "dynamics of heat sterilization" in the narrow sense of the term.

"Spores" (endospores of bacteria) have been used by many researchers in

the study of heat sterilization due to their great heat resistance. Many

studies have been made concerning the properties of spores, indluding their

great heat resistance, which is unique to them alone [16 - 21]. In order to

attain a rational method of heat sterilization, it is indispensable to under-

take physiological studies of the objects to be sterilized (among which "spores"

are of the greatest interest). Here, however, we shall not deal with this

aspect.

1. Logarithmic Death Law of Microorganisms

When the nutritive cells or spores of many types of microorganisms are

subjected to heat treatment, it is frequently found that the logarithmic curve

of survival, which plots the logarithmic value (lnN) of the number of surviving

bacteria at that time, has a linear relation to the processing time, t. This

behavior is similar to the timing of the "single-molecular reaction" which

occurs during chemical reactions, and the formula for it can be obtained by

using the number of surviving bacteria N in place of the concentration of the

unreacted substances in a chemical reaction. Thus, we obtain:

-dN =kN | (2.1)

or (2.2)
N=,No.;-".|

(Refer to Figure 1.) Here, NO is the number of survivors when the processing

time is t = 0, and k is the "death rate constant" at this processing tempera-

ture. It is obtained from the following:

1 A (2.3) /707

Here, N
1
and N

2
are the numbers of survivors at processing times tl and t2.
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A. Discovery of the Logarithmic

Z1, z \Death Law.- J. Lister, obtaining a hint

from L. Pasteur's research concerning

spontaneous generation and putrefaction,

introduced into surgery the method of

0oo Iusing carbolic water for sterilization.

o Subsequently, measurements were made of

the sterilization coefficients for the

O time t nutritive cells and spores of many types

of microorganisms with respect to car-

Figure 1. Logarithmic death of bolic acid and other types of disinfec-

microorganisms. tants [221, but no time measurements

were made. B. Krdning and T. Paul (1897)

[23], using spores of Bacillus anthracis, made temporal and quantitative studies

of their death caused by HgC12. K. Ikeda (1897) [241, analyzing the data of

B. Kroning and T. Paul (1897) [23], proposed the following experimental

equation:

>; t> =constant (2.4)

This is the first equation concerning the logarithmic death of microorganisms.

The logarithmic death of microorganisms when treated by chemicals was subse-

quently confirmed in the nutritive cells and spores of many other types of

microorganisms by T. Madsen and M. Nyman (1907) [251 and H. Chick (1908) [26].

T. Madsen and M. Nyman (1907) [251 subjected B. anthracis spores to heat

treatment at 100°C and 110°C and studied the time changes taking place. They

mentioned that the thermal deaths of these spores followed the logarithmic

death law, but satisfactory data could not be obtained because of the inexact-

ness of the test methods used. H. Chick (1910) adopted a test method similar

to that which we employ today. That is, he suspended the test microorganisms

in hot water (temperature 47-540 C), made samplings with a sterilizing pipette

after different periods of time had elapsed, and measured the number of sur-

vivors by means of plate culture. Using the nutritive cells of Bacillus
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typhosus, Bacillus coli commune, Staphylococcus pyogenes albus, and Bacillus

pestis, he confirmed the logarithmic death due to heat treatment.

B. Interpretation of the Logarithmic Death Law. After the discovery

of the logarithmic death of microorganisms, numerous interpretations have been

proposed for it. Normally, the thermal death of microorganisms occurs at a

rate in direct proportion to the number of bacteria surviving at that time.

This is exactly as if each of the single bacteria were behaving like a single

molecule, and it is believed, for this reason, that the inactivation of a

simple sensitive molecule inside each of the bacteria brings about the death

of that bacterium. Of course, as 0. Rahn (1934) [281 has shown, the actual

substance of the simple sensitive molecule within the bacterium, fitting the

conditions mentioned above, is a question which iscstill being studied in

various quarters today in connection with the death mechanism, and it is un-

clear whether it may properly be called a simple molecule or not [291.

To explain the interpretations offered in the past for the logarithmic

death law, let us divide them up into the following four interpretations.

(a) The reaction rate theory

This theory assumes that the death of a bacterium is the result of a

chemical reaction inside the bacterium. Death is considered to be a process

of thermal inactivation of one molecule inside the bacterium. The thermal

death process at this time can be approximated as a first order reaction for

the following reasons:

i) The molecular bonds are destroyed by direct activationoof the

molecules by means of thermal energy. In the chemical reaction theory, reac-

tions of this type proceed as first order reactions.

ii) The reaction between the molecule inside the bacterium and oxygen.

Under conditions of excess oxygen, such as during sterilization by dry heat,
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the oxidation reaction is regarded as a first order reaction.

iii) Reaction between the molecule inside the bacterium, and water or

steam. Just as in the oxidation reaction, if one of the reagents (in this

case water) is present in a great excess, even though the reaction.may.bet

a second order reaction, it still proceeds as a first order reaction.

In such a case, when indicating the reduced speed equation for the

unreacted molecule concentration C during the first order reaction, we can

use the number of survivors in place of C, as has already been mentioned.

(b) The stochastic process theory

If the death rate constant k in the death reaction rate formula

(equation 2.2) is defined as the "probability that a-bacterium will die because:

of heating within a unit of time," death can be regarded as a sort of Markoff

process in stochastic process theory. In this case, the probability that a

given state will occur in any given bacterium will depend directly on its

state at the time immediately preceding this. This can be expressed in a

transition diagram such as that shown in Figure 2.

At this time, the transition probability matrix is as follows:

M = transition probability from transition probability from

life to life life to death

transition probability from transition probability from

death to life death to death

(2.5)

=( 0 k1| (2.6)

The higher-order transition probability matrix after time t can be indicated /708

as follows:

0l,=((l-k~s l-(l-k)')| (2.7)
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Therefore, if the initial number of
1-k k -,I

Live ) (Dad) ) bacteria is NO, the number of sur-

O- L _ 5 '29 ~/vivors after time t, N, will be:

Figure 2. Transition probability N=A;(I-k)tL (2.8)
diagram of microbial death. (2.9)

Thus, the logarithmic death rate can be obtained. -

(c) Target theory

As was mentioned above, it was assumed that there was a simple sensitive

molecule (the actual substance of which might conceivably be DNA, various types

of RNA, protein, membranes, etc.) inside each bacterium, and that a fatal factor

such as a radiation particle during radiation bombardment would collide with a

target in the chemical structure of these substances. Death would result when

the chemical structure was destroyed or altered as a result. As for the fatal

factors in heat treatment, one need only assume something like the water mole-

cules which are excited by thermal energy inside the cell, as has been proposed

by S.E. Charm (1958) [301. In the death pattern at this time, let us assume

that k represents the probability that changes sufficient to make one target

lose its normal functioning will occur as a result of collision between the

target and the fatal factor within a unit of time. We can consider the number

of targets in place of the number of cells. Then, if the initial number of

targets is T
0
, the number of targets after time t will be:

r -ro. r- A (2.10)

If we assume that there is only one target present inside each cell, N = T, and

NO = To. Therefore, equation (2.10) will be:

...... I;I ,__ - 1 (2.11)
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(d) Most probable lifetime distribution theory

Aiba and Toda (1965) [31], assuming a large number of cell groups,

assumed that the heat-resistant life of the component cell units is determined

before apparent heating, and derived a logarithmic death equation from the

most probable lifetime distribution.

They established i classes of heat-resistant life from tl todti. It

was assumed that the numbers of cells belonging to each class were N1, N2 , ...,

N.. The a priori probability that a unit cell would have a heat-resistant

life t
i
was defined as gi. In this case, the probability of a heat-resistant

life distribution W(N1, N2, ..., Ni) will be

NO! g1N'·g .. g1 (2.12)

Let us seek a combination of N1 , N2, ..., Ni which will give the maximum value

of W(N1, N2, ..., Ni ) in order to establish the mode of heat-resistant life

distribution which would appear most easily. In this case, we obtain:

,N-i Cl .exp(-Nfl) 1 (2.13)

In cases when the number of cells having heat resistant life ti, Ni, displays

a heat-resistant life distribution such as that shown in (2.13), W(N1, N",

..., N
i
) will assume the extremal value (maximum value).

Equation (2.13) can be written continuously for cell groups with an

infinitely large number.

- d)- ,. exp(-A) (2.14)

Putting this into integral form, let us rewrite the coefficient. In this case,

we obtain the following:

N=NVoexp(-kt) (2.15)

In this case, k can be defined as the "inverse number of the average life

until the reacting substance participates in the reaction."
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In this manner, various interpretations of the logarithmic death law

are possible. However, let us here assume that the death rate constant k is

the "temporal probability density of occurrence of the event of death (hr-1)."

C. Metric Indications of Heat Resistance. Different researchers use

different methods of indicating the heat resistance of microorganisms. Let

us describe some typical methods.

(a) Thermal death rate constant (k)

This indicates the temporal probability density that the event of

death will occur. H. Chick [271 sought this by:

k - I 1og(N,/N, ) (2.16)

Ordinarily, this value will not undergo changes in a series of heat

sterilization experiments in which the initial bacterium concentration is

varied. However, when Amaha (1952) [321 performed heat sterilization of

spores of Bacillus natto at 1000°C, the thermal death rate constant (k) assumed

the following value on account of variations in the initial spore concentra-

tion (No0 ) : k1=C~x(-^l) x1og,.X;| (2.17)

The cause of this is not clear, but it appears to be an interesting question

(Figure 3).

(b) 90% death time (decimal reduction time)(D)

L.I. Katzin and L.A. Sandholzer (1943) [33] proposed the use of the heat

processing time required to cause the death of 90% of a given microorganism

__group at a prescribed temperature. They proposed that this value be used as

the "D-value." The relationship between the D-value and the thermal death

rate constant k is:

D=. .203/k (2.18) /709
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In most cases, microbiologists use the

D-value merely for the purpose of deter-

mining the time required in death, while

technicians generally adopt k, since

they are chiefly interested in the

reaction rate.

Another value, in which the

concept of this D-value has been fur-

ther expanded, is the thermal reduction

time (TRT). This coincides with the D-

(TRT))rrequired to reduce a given groupn.

(2.19)
r'1' 1 7= D

(c) Thermal death time (TDT)

The thermal death time (TDT) is the heating time required to cause

death of all of a given group of microorganisms under definite conditions.

10
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D. Bigelow and J.R. Esty (1920) [34] measured the thermal death time of spores

of heat-resistant bacteria by a method using small test tubes. They showed

that the TDT becomes a function of the temperature when the numbers of bacteria

tested are identical. The TDT curve is the graph obtained by plotting the Log

TDT (or the Log D) against the heat treating temperature.

The gradient of the TDT curve is called the Z-value, which has the

following relationship with the temperature quotient Q
10
, which is described

below.

Z=10/og Q 0o(°C) l (2.20)

or

Z=1s/log Qio(:F) (2.21)

In sterilization of canned foodstuffs, etc., this value is an important param-

eter in calculating the sterilizing conditions. The TDT at a temperature of

2500 F (121.110 C) is called the F-value. The TDT curve can be characterized by

these F and Z values.

It is said that with many types of microorganisms the TDT curves will'be

straight lines both in wet heat sterilization [34 - 36] and dry heat sterili-

zation[37, 38]. However, J.L. Edward, et al. [391, using spores of B. subtilis,

report that in the high temperature zone, the curve assumes a tangential form

with a convex shape at the bottom (Figure 4). D. Wang, et al. [401 report

that the TDT curve of the spores of B. stearothermophilus does not have a

linear shape in the high temperature zone (Figure 5).

During heat treatment in the high temperature zone, in comparison with

that in the low temperature zone, the time required to raise the temperature

of the spores which are to be sterilized to a given temperature and to cool

them off becomes large enough that it cannot be ignored, as compared with the

pure sterilizing time. It is probable that the TDT curve was believed to.

have a linear shape up to a rather high temperature zone because there was no
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good method of handling the errors concerning this heat treating time.

(d) Thermal death point

The minimum temperature at which death of the test bacteria can be

brought about after heat treatment for 10 iminutes is called the thermal death

point. Naturally, the value differs according to the quantity of test bac-

teria.

Among the metric methods of indicating the thermal resistance mentioned

here, R and D are normally unrelated to the number of test bacteria, but TDT

and TDP are values which change according to the number of test bacteria.

Consequently, the former two values are suitable for-:theoretical studies of

heat sterilization, while the latter are convenient when setting up actual

sterilizing methods.

Various other metric indications of heat resistance, in addition to the

four methods mentioned ab'ove, are also conceivable, but the other methods are

not in very wide general use.

D. Relationship between Death Rate Constant and Temperature. S.

Arrhenius [411 proposed the following equation for the relationship between

the reaction rate constant and the temperature in a chemical reaction

dlnk _ E (2.22)
d?' 1'- '? |

Exactly the same equation applies to the thermal death rate constant. Inte-

grating the above equation, we obtain the following.

k=A .e-E/lr1 I (2.23)

Here A is the frequency factor, and E is the activation energy of the

reaction.
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H. Eyring [42], using the concept of an active complex compound,

derived the relationship between the reaction rate constant and the tempera-

ture from the absolute reaction rate theory.

k= (2.24)

In comparison with equation (2.23), there is a term here for the temperature

in the portion corresponding to the frequency factor A, and it is believed

that in a broad temperature range the values of A in equation (2.23) will

undergo changes.

Equation (2.24) can also be altered as follows:

k7 (2.25)

kD;7' .eJ*-eS |(2.26)

Here, AFT\ is the free energy of activation, Hd-lithe activation heat, and

aS;'f is the activation entropy. Estimation of these thermodynamic variables

will be of assistance in understanding the vital reactions which cause cell

death.

The simplest method of indicating the relationship between the death

rate constant and the temperature is the temperature quotient (QATO). Normally

it is given in terms of the ratio between kt
at temperature t, and kt_10 at a

temperature (t - 10), which is 100 K lower than t.

aQ10o=/lk',101 (2.27)

Although this value varies with the temperature, it may be regarded as

constant within a narrow temperature range. Therefore, it is frequently

used. The relationship with the Z-value is exactly as described above. The

value is 2 - 3 in ordinary chemical reactions, but it is known that there is

a value close to 10 in cases such as the death of microorganisms or thermal

degeneration of protein.
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2. Non-Logarithmic Death Curves

In most cases, the survival logarithmic curves of microorganisms generally

follow the logarithmic death law, but a large number of results have been

reported which do not follow the logarithmic death law and which cannot be

explained in terms of experimental error. If we classify the survival loga-

rithmic curves in terms of their shapes only, we obtain the results in Figure 6.

z

, 2 2)
- I

0 time t

12
C

;;f

.S

0 time t

(1)
(2)

(3)

(4)

(5)
tme

0 time t

Type of survival curves.

Logarithmic death pattern

Increased number pattern

Upper convex pattern

Lower convex pattern

(6) Composite patterns

The first pattern has already been

discussed. As for the second, third,

and fourth patterns, some efforts have

been made to assign reasons to them or

to provide analyses from the standpoint

of dynamics.

A. Reasons for Non-Logarithmic Death Patterns. H. Chick [271 analyzed

the thermal deaths of Staphylococcus pyogeneses aureus. He reported that the

survival curves sometimes followed the logarithmic death pattern, and some-

times the non-logarithmic death patterns (3 or 4). He assumed that the cause

was probably connected with the pre-culture history of the bacteria used. How-

ever, generally speaking, pattern 3 occurred in the newer ones, while patterns

1 or 4 appeared in the older ones. 0. Rahn [28] also confirms similar findings.

According to F. Johnson, et al. (1954) [43], the exceptions to the

logarithmic death law are attributable to the fact that it is impossible to

make accurate measurements of the numbers of individual survivors in any pro-

cessing time on account of the form of the bacteria used and the testing

14
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conditions. Especially in cases when the bacteria used are types with lumpy

shapes (Staphylococci, etc.), when they are joined in a chain shape (Strepto- /711

cocci, etc.), or when they are in a lumpy shape for some other reason, it is

impossible to make accurate measurements of the number of survivors by the

plate culture method. Nevertheless, he argues that experimental error is not

the only reason and that there are also other factors, such as differences in

the bacteria themselves in their susceptibility to death, the age of the cul-

ture, etc. In conclusion, he mentions the following five factors:

i) Precision of measurement of number of survivors

ii) Number of molecules which must be destroyed inside the cell when

a living bacterium is changed into a dead bacterium (n in the multi-molecular

model described below)

iii) Total number of such molecules inside a cell (m in the model

below)

iv) Number of different types of molecules whose destruction results

in death

v) Heterogeneity of the sensitivity of the individual bacteria.

C.R. Stumbo (1965) [44] discusses this problem from a different view-

point and mentions the following factors as having an influence:

i) Thermal activation with respect to germination of the bacterial cell

ii) Admixture of a group with a different heat resistance

iii) Presence of a group of cells having a lumpy shape

iv) Cell agglutination during heating
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v) Deagglutination during heating

vi) Conditions pertaining to the culture medium for counting the number'

of survivors.

Among these causes, let us next discuss the non-logarithmic thermal

deaths which are not caused by manipulation factors and which are observed at

times when the presence of heterogeneous groups or the influence of lumpy

shapes are not conceivable.

B. Dynamic Analysis of Non-Logarithmic Deaths. VAif6Us death models

have been proposed to explain the death behavior in patterns 2, 3, and 4 in

Figure 6. There are some among them in which the derived values do not coin-

cide with the test values, or in which the physiological significance of the

parameters which have been assumed is unclear. However, let us now list the

models which have been proposed thus far.

(a) Multi-molecular model

The second pattern of death behavior can be analyzed by this model. A

system is assumed in which the death of all the cells occurs as a result of

destruction of one type of molecule in the cells. It is assumed that the num-

ber of such molecules inside the cells is in, and that death occurs when n of

these m molecules are destroyed. In this case, p is the probability that any

molecule among the m molecules will be destroyed at any given time t. If q

is the probability that this molecule will remain undestroyed, the following

general equation will apply

l=(p +q)1'= p+nm p'ptm-)q+ -) p(m-2)2+

___ -") pnq'"m'n)+..n ](3.1)

The death rate depends on numbers m and n and on k, the rate constant

The death rate depends on numbers m and n and on k, the rate constant

for the reaction destroying the molecules. The probability of destruction of

the molecules is

16



p= t-,I= (1-e-m) (3. 2)(3.2)

On the other h'and, the probability that the molecules will not be destroyed

is

qI=e-: (3.3)

Generally speaking, in a (m,n) system in which death occurs because of

destruction of n molecules among a total of m molecules, in equation (3.1),

which has (m + 1) terms, the final n term is the one which gives the survival

probability (Figure 7). That is,

(,I, t) : ./No=E ,nCi(e-C)m-i(l -e-) (34)

l1.0 Here, mCi is a binomial coefficient. The

following equations are obtained as
'N
N0 special cases of equation (3.4).

j 0.1 .,,): Av/ Vo=(l-e-AC)ml (3-5)
, :_ \g\ W\X\(in, 1): V/Na=e-mt (3.6)

(1,1) D V:- \=e- (3.7)

Al 0.01 1 2 3 4 5 htW.A. Moats (1971) [45] assumed that

kt- death would occur among N critical sites

when XL of them were inactivated. In a
Figure 7. Theoretical curves
illustrating the rate of death system in which inactivation of the

on multiple hit model. individual sites occurs at random, fol-

lowing the pattern of a first degree

reaction, but the critical sites have exactly the same heat resistance, and

the groups of bacteria are uniform in their heat resistance, he showed that

death would follow a multi-molecular death model. He also described methods

of calculating the various parameter values for this (k, N, and X). In

addition, he sought the parameter values for Pseudomonas viscosa and Salmonella

anatum.

As was pointed out above, if the values of m and n vary according to the

amount of bacteria cultured, according to this theory there will be changes

1]7



in the death rate, even though the death rate constant k maintains a constant

value [46]. A. Anellis, et al. (1965) [47] applied equation (3.5) to radiation

sterilization of Clostridium botulinum spores (it is felt that the target

theory applies best to them), and calculated the values of m. They found that

the values differed even in agreement with the properties of the medium in

which the spores were suspended. Furthermore, this theory becomes even more /712

complicated when the destruction of survival of more than one type of molecules

has a relation to death.

(b) Two-line approximation model

H. Chick [271 used two lines to approximate the survival logarithmic

curve in patterns 3 and 4. He obtained different death rate donstants in the

early and in the later period. M. Amaha and Z.J. Ordal (1957) [481 also used

spores of Bacillus coagulans and obtained survival curves of the third pattern.

Approximating these with two lines, they obtained D
1
andcD2 for the early

period and for the later period.

A.E. Humphrey [14] and J.W. Richards [40] showed that when the initial

microorganism group, rather than being purely homogeneous, is a mixed group

with differing heat resistances, the survival logarithmic curves for each of

the groups as they die in linear fashion will assume the form of pattern 4.

In the preceding two examples, it is inconceivable that two types of

mixed samples which were totally different could have beenuused. Therefore,

even though the two-line approximation method is a simple one, one cannot

consider it to be a suitable analytical method.

(c) Initial number conversion method

One often obtains survival curves of patterns 2 and 3 in cases when

thermal activation is necessary for germination of spores. In patterns 2 and
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3 in Figure 6, let us extrapolate at t = 0 the logarithmic death curve for

the later period of thermal sterilization. As a result, we will obtain the

value NO*. This model is one which attempts to express the later-period

logarithmic death of the survival curve, assuming that

Ir\,='1c-*l U(3.8)

In this model, when we have counted NO (viable), the number of survivors

by plate culture when t = 0 (processing without heating), and NO (total),

the total num.b.er obtained by microscopic examinations, it is obvious that

N0 (viable) <NN0 (total)

If thermal activation alone is the cause of non-logarithmic behavior in the

initial period, we ought to obtain the following:

NO* = NO (total) NO (viable)

However, it frequently happens that

NO* > NO (total)

Thus, the significance attached to NO* is vague, and this model is quite

problematic.

(d) Activated spore model

A.E. Humphrey [141 mentions the analysis of survival curves of pattern

3 in connection with the death delay phenomenon which occurs in the initial

period of heating upon thermal death of spores. That is, if kl is the rate

constant for spores (N) becoming spores in the germinated state (N*), and also

if k
2

is the rate constant for them to reach death, it will be possible to use

the relationship

N¥tSf(c¢'1,' c-')] (3.9)

and to make an approximate analysis of the survival curves of pattern 3.
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J.J. Shull, et al. [50, 511 have made even more detailed studies of this

same concept (Figure 8). Let us assume that the initial spore group is a

mixed group consisting of activated

indlial spre group
,heOm,, dethro

iocelvotcd s;ores LAO)
.......... . ...--- .... .2:2'

Figure 8. Activated spores model
by J.J. Shull, et al. [51].

spores (capable of forming a colony in a

suitable culture medium) A
0

and non-

activated spores (which are reversible

and can be brought to the activated

state by heating) NO. In this model,

the activated spores reach death by

heating at rate constant k, but the non-

activated spores die at k after having

first changed to the state of activated

spores (the rate constant of this ther-

mal'activation is a) (Figure 8).

Lt, the number of live spores at time t, is

L,=N&+A/ | (3.10)

Here N
t

is the number of non-activated spores at time t. It decreases by

On the other hand, At is the number of activated spores at time t.
t oAeinfmhitlrp-kt

tity of A remaining from the initial group is A0'e 

(3.11)

The quan-

The changes in A
t
and L

t
during a micro-time interval are as follows:

dA, =-kAg+aNo.e-at
dt (3.12)

dLt -kA'
dLet _-| (3.13)

When a * k, the solution for (3.12) is

Ah=Aoen ac+ kithecs-luio)n (3.14)

When a = k, the solution is

(3.15)
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J.J. Shull, et al. [51] made comparisons of the test results with B.

stearothermophilus and the results from the theoretical equation. They report

that, although the curve shapes are similar, there are some differences. When

attempts were made to correct these differences, the thermal activation ceased

to follow the pattern of a first order reaction.

(e) Historical model

Terui (1966) [521 divided thermal sterilization systems into the

following two main categories, depending upon whether the thermal sensitivity

of the cells varied according to their thermal history during sterilization:

i) Nonhistorical system (the thermal prehistory during sterilization

exerts no influence on the thermal sensitivity of the surviving cells)

ii) Historical system (the thermal prehistory during sterilization has

an influence on the thermal sensitivity of the surviving cells)

He showed that survival curves of patterns 3 and 4 can be analyzed by

using a model belonging to a historical system in which the value of k under-

goes changes depending on the thermal history (Figure 9).

Xs

kS kR

D
Figure 9. Model of simple historical
system [52].

Xi Xi- Xi Xwhi

k k k

.. D

I~~~~~~~~~~~~~~~~~~~~~~'1

Figure 10. Schematic diagram of
thermal inactivation [56].

The simplest type of historical system is a model of the single-molecular

reaction pattern, in which the sensitive molecule upon being heated changes
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from a low-sensitivity molecule (R) into a high-sensitivity molecule (S), or

vice-versa. In either case, the molecule can become a degenerated molecule

(D).

In the model in Figure 9, in pattern 3, AFR + S << 0 under heating

conditions, and in pattern 4, AFS + R <<0. Here, k is the rate constant

moving towards D, and X is the rate constant for the changes between S and R.

The suffixes indicate the points of departure for the reactions.

Following this model, let us formulate the equations according to rate

theory. The following equations can be obtained.

7NI-= Ks¢ -(< s' S ~ + (1 -Ks)c- k RC 1 (3.16)(3.16)

(3.17)

Ks=7 s(ks-kR)1(ks+xs-kO) I (3.18)

Kr= -7 i2(ks--kz)/(ku xji-ks) I (3.19)

7 s = 1 -? = vslX = ( - (3.20)

Here, N
S

and N
R
are the initial numbers of S and R spores. yS and yR are

the initial presence ratios of S and R. Furthermore, equation (3.16) corres-

ponds to pattern 4, while equation (31.17) corresponds to pattern 3.

This model has been used to analyze the thermal death behavior of spores

of B. subtilis var. niger and B. pumilus, which display survival curves of

patterns 3 and 4 [35 - 55]. An interesting point is the nature of the

reaction at the X stage according to the estimated activation energy value.

At the A
S
stage of B. pumilus spores, a protective reaction (S + R) occurs

with respect to heat, and the activation energy is approximately 25 kcal/mole.

On the other hand, in the case of the spores of B. subtilis var. niger, at

the XR stage, a thermal activation reaction (R + S) takes place, and the

activation energy is approximately 63 kcal/mole. The magnitude of the acti-

vation energy corresponds to that of thermal degeneration of protein. This

point differs from the X stage of B. pumilus.
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Analysis of the above has been performed, assuming that both yS and yR

have values of 1. In this model, the same sort of analysis can be performed

when both S and R are present in the initial spores.

(f) Thermally damaged spore model

K. Toda (1970) [56] assumed the existence, in the heat treatment process,

of thermally damaged spores, which were an intermediate state of the undamaged

spores. He sought the changes in the number of spores in each of these states.

Let us consider the model in Figure 10 as the general pattern of the

thermally damaged spore model and seek the rate of change in the number of

spores at activation state "i'"

d'/ldt= -(k+O;)AVi+a-xr Ni-; (3.21)

Here,

(3.22)

The solution of N. is

J-1 e (3.23)

Here, coefficient Aj is

icAJ (1nt J-Ar )in (3.24)

Coefficient B in equation (3.24) is a sign indicatingl function:

The total number of live bacteria at time t is the total of Ni:

N=E iN oe-" (3.26)

The model shown in Figure 11 is a simple model derived from this

general theory, by which it is possible to explain the thermal death process

of B. subtilis spores. In this model, the initial spores are of two states:
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iniliol s.ore group

active X less-cive het-domoged
sDare spore - po

N, NZ N,

dead spore

Figure 11. Schematic diagram of
simpler model [56].

N
1
and N

2
. This corresponds with the

fact that the total number of surviving

spores from the B. subtilis spores (N =

N
1
+ N 2 + N3 ) displays a logarithmic

death pattern, while the number of un-

damaged spores (N* = N1 + N2) displays

a survival curve following pattern 4.

The values of N and N* at time t are

given by the following equations:

(3.27)N-=N+Aa,+AI=Ns-- I

NV*== +L2- X2 Nc-02 1.,A

X2--Al

(3.28) /714

Here, NO = N10 + N20, N30 = 0

In this model, the heat treatment processes of the spores can be explained

in the following manner:

i) At least two types of activity distributions are present in the group

of spores which have not yet been subjected to heat treatment.

ii) There is a successive inactivation reaction between the three types

of live spore states of activity, including the thermally damaged spores.

iii) It is possible to treat the process as a "composite reaction"

accompanied by a death reaction from each state of activity.

(g) Others

In the foregoing, we have listed some of the models which have been

reported thus far and applied to the death of microorganisms. However, num-

erous other models are also conceivable if considered simply as models.
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K.J. Laidler (1958) [571 has given numerous models concerning the

degeneration of protein. Most of them are also valid as models for thermal

death of microorganisms.

The model in Figure 10 assumes a composite reaction. It is also possible

to consider "successive reaction models" in which intermediate stages before

death are considered, or "multisite models," in which numerous types of sensi-

tive molecules are considered, and in which the destruction of any of the

sensitive molecules would lead to death. At any rate, what must be considered

in the future is the necessity of clarifying the key reaction in death and

of producing a model centerimggaround this reaction. In this respect, also,

it is felt keenly that it is important to investigate the causessof death as

well as the causes of heat resistance.

C. Thermal Activation. One frequently observes thermal activation

phenomena when bacterial spores are used as material for heat sterilization

experiments. In the general treatises of A. Keynanaand Z. Evenchick (1969)

[58] or of R.W. Berk and W.E. Sandine (1970) [59], it is demonstrated in detail

that thermal activation plays a necessary and important role in germination of

bacterial spores. For this reason, the survival logarithmic curve does not

appear in its true form. Instead, the difference between the increase in the

number of colony-forming cells as a result of thermal activation and the

thermal death number appears as the apparent survival curve of the initial

period. Thus, we sometimes see an increase in the apparent number of live

bacteria, or the survival curves sometimes assume a convex shape at the top.

In order to analyze the death behavior, it is necessary to remove this

sort of activation by studying the preheating conditions which will not result

in death. This amounts to the same thing as removing, by a suitable method,

the counting errors resulting from congelation or flocculation. It is neces-

sary to obtain a correct survival curve.
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As for the relationship between thermal activation moving towards

germination and thermal activation moving towards death, there are still

interesting questions left for solution in the future. The latter is a re-

action towards susceptibility to heat and corresponds to changes of k. The

activation energy of germination is approximately 20 kcal/mole [60], but in

thermal activation towards germination, approximately the same value as in

thermal degeneration of protein (approximately 72 kcal/mole) has been observed

in B. megaterium spores [61]. As for the thermal activation towards death,

the value has been reported to be approximately 62 kcal/mole [55]. However,

it is not clear whether both of these thermal activations are a single process

or not.

In conclusion, the author expresses his profound gratitude to Professors

Terui Gyozo and Shibasaki Isao of the Faculty of Engineering of Osaka Univer-

sity, who kindly favored the author with their advice, and to Professor Miura

Yoshiatsu of the Faculty of Pharmacology of Osaka University.
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